新能源发展的一大主线就是技术进步。正因为如此,我们的研究报告,迄今从三元电池、磷酸铁锂电池、电池,到氢燃料电池,再到钠离子电池,基本做到了全域覆盖。锂、氢、钠三大类电池玩家已经相对清晰:不同类型的电池互为补充,共同推动着新能源革命大潮。
不过最近突然冒出了新玩家——钒电池,令不少投资者措手不及。
一是大家此前都没怎么听到过钒电池的消息,更不确定A股有没有纯正标的;二来,“凭空出现”的钒电池,跟“氢、锂、钠”都不是同族元素。新能源真是越来越卷,炒化学元素周期表都变成了随机游走。难怪大家调侃:“投资新能源还需要问问门捷列夫是怎么想的。”
一直以来,在新能源这条大赛道上,大家的投资视角始终围绕着“氢、锂、钠”:氢燃料电池什么时候规模化量产;特斯拉电池要来了、麒麟电池明年要上量;宁德时代发布钠离子电池。对于这陌生的钒电池,姑且算他是“黑科技”吧,等这波热度过去就好了。
其实不然,自19世纪60年代后期开始的第二次工业革命将人类带进电气时代以来,电力在人类社会变得不可或缺,而电池技术的发展也深度融入到历史进程当中。如今进入到能源革命时代,电池技术的研发和创新更是成为能源转型的胜负手。
本文作为的新能源系列篇,也是钒电池的开篇,将携手“氢、锂、钠”,认识钒电池的前世、今生和未来。
01钒电池是什么来路?
1.工作原理
钒电池,全称为全钒氧化还原液流电池。乍一看这长串的名字,是不是有点懵。别着急,我们按顺序一个个拆解。
第一,所谓全钒,按照字面意思理解,是因为电池的正负极都是钒。作为类比,磷酸铁锂电池正极是磷酸铁锂,负极是石墨;铅酸电池的正极是二氧化铅,负极为铅。
第二,氧化还原,这点大家好理解,即电池的基本原理。氧化还原反应的过程有电子得失,电子的移动就形成了电流。
第三,之所以叫液流电池,是因为正、负极均为液体。可以想象成正负极和电解液“合体”了,电池能量直接存储在液态的电解质中。当然,有“合”就有“分”,钒电池的电解液和电堆是分开的。
为了方便理解,我们回顾下锂电池。锂电池的正负极之间是充满电解液,通过隔膜分开,电池能量主要储存在固体的电极材料中。这也是钒电池和锂电池最大的区别。
接着再看钒电池的工作过程。我们所熟悉的“摇椅式”锂电池的工作原理是锂离子在摇椅的两端(正极和负极)来回奔跑,即完成了充放电的过程。而钒电池并不“存在”正负极,不需要跑远了,只用在自家门前跑——正负极电解液各自按照既定路线流向电堆即完成充放电的过程。
图:全钒液流电池工作原理示意图;资料来源:百度,锦缎研究院整理绘制
2.钒电池结构特点
因为钒电池的电解液和电堆是相互独立的,电解液单独存放在外部的储罐中,另外由于电解液是无法单独流向电堆的,需要通过外部的泵和管路输送内部。
所以肉眼可见,钒电池就是个大块头。举个不是特别恰当的例子,如果锂电池是手机,那么钒电池就是座机。
常见的钒电池主要由两个装电解液的储罐、电堆、循环泵和管路组成。如果把储罐比作汽车的油箱,电堆就是发动机,储罐中的电解液通过循环泵不断输送到电堆内,电堆则负责充放电。
钒电池的另一大特点是设计灵活,可以按需组合、定制。你不同纠结大杯、中杯,还是超大杯。
展开来讲,钒电池的功率单元和容量单元是相互独立的“解耦设计”,储罐中的电解质决定电池容量,电堆的大小和数量决定电池的输出功率。也就是说,要增加电池容量,就相应增加电解液储罐数量;要提高输出功率,只要增加电堆的数量就可实现。是不是很像火车的设计?你想多拉乘客,就增加车厢数量;你想加大马力,那就换上大功率的火车头。
以融科储能的钒电池储能系统为例,功率kW的钒电池系统由功率集装箱(20尺)、2个外置储罐、电池管理系统及管路等辅件构成。如果需要kW的钒电池系统怎么办呢?将2个功率集装箱串联后,增加2个外置储罐,接入一台kW变流器,即可实现。
以此类推,钒电池可以组合成更大规模电池组,其输出功率可达数百兆瓦,可以存放数十万度电。看到这里,是不是觉得钒电池也并不是“一无是处”。
图:融科储能KW钒电池储能系统;资料来源:融科储能